Gastric bypass increases energy expenditure in rats.

نویسندگان

  • Marco Bueter
  • Christian Löwenstein
  • Torsten Olbers
  • Maggie Wang
  • Nina L Cluny
  • Stephen R Bloom
  • Keith A Sharkey
  • Thomas A Lutz
  • Carel W le Roux
چکیده

BACKGROUND & AIMS Mechanisms underlying weight loss maintenance after gastric bypass are poorly understood. Our aim was to examine the effects of gastric bypass on energy expenditure in rats. METHODS Thirty diet-induced obese male Wistar rats underwent either gastric bypass (n = 14), sham-operation ad libitum fed (n = 8), or sham-operation body weight-matched (n = 8). Energy expenditure was measured in an open circuit calorimetry system. RESULTS Twenty-four-hour energy expenditure was increased after gastric bypass (4.50 +/- 0.04 kcal/kg/h) compared with sham-operated, ad libitum fed (4.29 +/- 0.08 kcal/kg/h) and sham-operated, body weight-matched controls (3.98 +/- 0.10 kcal/kg/h, P < .001). Gastric bypass rats showed higher energy expenditure during the light phase than sham-operated control groups (sham-operated, ad libitum fed: 3.63 +/- 0.04 kcal/kg/h vs sham-operated, body weight-matched: 3.42 +/- 0.05 kcal/kg/h vs bypass: 4.12 +/- 0.03 kcal/kg/h, P < .001). Diet-induced thermogenesis was elevated after gastric bypass compared with sham-operated, body weight-matched controls 3 hours after a test meal (0.41% +/- 1.9% vs 10.5% +/- 2.0%, respectively, P < .05). The small bowel of gastric bypass rats was 72.1% heavier because of hypertrophy compared with sham-operated, ad libitum fed rats (P < .0001). CONCLUSIONS Gastric bypass in rats prevented the decrease in energy expenditure after weight loss. Diet-induced thermogenesis was higher after gastric bypass compared with body weight-matched controls. Raised energy expenditure may be a mechanism explaining the physiologic basis of weight loss after gastric bypass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute peripheral GLP-1 receptor agonism or antagonism does not alter energy expenditure in rats after Roux-en-Y gastric bypass.

Compared to traditional weight loss strategies, the compensatory decrease in energy expenditure in response to body weight loss is markedly attenuated after Roux-en-Y gastric bypass surgery (RYGB). Because basal and postprandial levels of glucagon-like peptide-1 (GLP-1) are increased after RYGB surgery, and because GLP-1 has been shown to increase energy expenditure, we investigated if increase...

متن کامل

Increased energy expenditure in gastric bypass rats is not caused by activated brown adipose tissue.

OBJECTIVE To investigate whether gastric bypass induces a higher activity of brown adipose tissue and greater levels of the brown adipose tissue-specific protein uncoupling protein-1 (UCP-1) in rats. METHODS Gastric bypass rats and sham-operated controls (each n = 8) underwent whole body (1)H-MR spectroscopy for analysis of body composition and (18)F-fluorodeoxyglucose positron emission tomog...

متن کامل

Increased Postprandial Energy Expenditure May Explain Superior Long Term Weight Loss after Roux-en-Y Gastric Bypass Compared to Vertical Banded Gastroplasty

BACKGROUND AND AIMS Gastric bypass results in greater weight loss than Vertical banded gastroplasty (VBG), but the underlying mechanisms remain unclear. In addition to effects on energy intake the two bariatric techniques may differentially influence energy expenditure (EE). Gastric bypass in rats increases postprandial EE enough to result in elevated EE over 24 hours. This study aimed to inves...

متن کامل

Mechanistic Comparison between Gastric Bypass vs. Duodenal Switch with Sleeve Gastrectomy in Rat Models

BACKGROUND Both gastric bypass (GB) and duodenal switch with sleeve gastrectomy (DS) have been widely used as bariatric surgeries, and DS appears to be superior to GB. The aim of this study was to better understand the mechanisms leading to body weight loss by comparing these two procedures in experimental models of rats. METHODS Animals were subjected to GB, DS or laparotomy (controls), and ...

متن کامل

Isolated duodenal exclusion increases energy expenditure and improves glucose homeostasis in diet-induced obese rats.

Roux-en-Y gastric bypass (RYGB) in rodent models reduces food intake (FI), increases resting energy expenditure (EE), and improves glycemic control. We have shown that mimicking the duodenal component of RYGB by implantation of a 10-cm endoluminal sleeve device (ELS-10) induces weight loss and improves glycemic control in diet-induced obese (DIO) rats. We sought to determine the mechanisms and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gastroenterology

دوره 138 5  شماره 

صفحات  -

تاریخ انتشار 2010